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Synopsis The mathematical relationships among rotations producing coincident site lattices 

are developed in terms of intuitively understandable algebraic and topological models.  

Examples demonstrate applications in grain boundary engineering and in the statistical 

descriptions of grain boundary networks. 

Abstract This work is intended to be a mathematical underpinning for the field of grain 

boundary engineering and its relatives.  The interrelationships within the set of rotations 

producing coincident site lattices in cubic crystals are examined in detail.  Besides combining 

previously established but widely scattered results into a unified context, the present work 

details newly developed representations of the group structure in terms of strings of 

generators (based on quaternionic number theory, and including uniqueness proofs and rules 

for algebraic manipulation) as well as an easily visualized topologi cal network model.  

Important results that were previously obscure or not universally understood (e.g. the Σ 

combination rule governing triple junctions) are clarified in these frameworks.  The methods 

also facilitate several general observations, including the very different natures of twin-

limited structures in two and three dimensions, the inadequacy of the Σ combination rule to 

determine valid quadruple nodes, and a curious link between allowable grain boundary 

assignments and the four-color map theorem.  This kind of understanding is essential to the 

generation of realistic statistical models of grain boundary networks (particularly in twin-

dominated systems) and is especially applicable to the field of grain boundary engineering. 
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1. Introduction 

1.1. Motivation 

The field of grain boundary engineering aims to improve material properties by controlling 

the types of grain boundaries in a network (i.e. to increase the population of boundaries with 

desirable characteristics) as well as the topological properties of the networks themselves (e.g. 

reducing the likelihood of a large continuous path of weak boundaries).  Significant strides 

have been made in this field in recent years (e.g. Gertsman et al., 1994; Randle, 1996; Kumar 

et al., 2000; Schuh et al. 2002), resulting in better understanding and control of brittle fracture 

strength and related phenomena in polycrystalline materials.  Further progress demands 

highly statistically realistic models of grain boundary networks, as it is becoming clear that 

what may at first glance appear to be subtle and mathematically obscure sources of 

correlation in fact have large effects on the real properties of materials (Palumbo et al., 1992; 

Gertsman & Szpunar, 1998; Kumar et al., 2000; Minich et al., 2002).  Not just the populations 

of certain types of grain boundaries are important; distributions of triple junction types and 

longer-range correlations induced by crystallographic consistency requirements need to be 

considered as well. 

In this work we will consider the inter-relationships among the various rotations that 

produce coincident site lattice (CSL) misorientations (i.e. rotations which map a fraction 1/Σ 

of the lattice points from one crystal grain onto lattice points of another, usually adjacent, 

grain) (Mykura, 1979).  These misorientations make up a subgroup of the usual rotation group 

in three dimensions (SO(3)), with the constraint that the rotation matrix elements are all 

rational numbers.  It is known that, particularly in the case of twin-dominated structures in 

cubic crystals (containing a large number of boundaries with Σ = 3n), neglecting the 

interconnectivity of this group of rotations can lead to statistically skewed, unrealistic results 

(see the references in the preceding paragraph).  For example, the often-discussed pure-Σ3/Σ9 

twin-limited structure (consisting entirely of Σ3 and Σ9 boundaries, in a 2:1 ratio) (Palumbo 

et al., 1992; Miyazawa et. al, 1996; Gertsman, 2001b) is easy to construct in two dimensions 

but does not exist for most three-dimensional networks unless either the Σ3/Σ9 ratio is 

significantly reduced or low-angle Σ1 boundaries are brought into the network (Gertsman 

2001b) (and in the latter case, the fraction of Σ3 boundaries can exceed 2/3).  Further, the 

frequently-simulated two-dimensional hexagonal and three-dimensional tetrakaidecahedral 

arrays, while admittedly convenient, house subtle biases due to their unusual colorability 

properties.  For example, a network of all Σ9 boundaries is possible in the tetrakaidecahedral 

array (as well as for any two-dimensional structure, via the four-color map theorem), but for 



 

 

the vast majority of three-dimensional networks no such structure is possible.  On the other 

extreme, a common misunderstanding of the CSL interrelationships would lead one to believe 

that a network of all Σ9 boundaries is impossible even in two dimensions, which is assuredly 

not the case (Gertsman & Tangri, 1995).  These examples are developed to illustrate the 

power of the formalism presented in this paper--once the methods are developed, the 

demonstration of each of the above assertions simply amounts to drawing and making 

observations on a small number of graphs.  Implicit in these graphs is the entire structure of 

the CSL rotation group and the manner in which this group governs the network of grain 

boundaries. 

Developing these ideas rigorously requires a significant foray into group theory and 

number theory, but the reward at the end is that once our models are developed, we no longer 

have to think in terms of Euler angles, integer quaternions, rational matrices, or axis-angle 

pairs.  Everything about the interconnectivity of the group can be calculated in terms of 

simple algebraic operations on strings and mappings of the nodes of one graph to the nodes of 

another.  In short, we are trading algebra for geometry, which has proven time and again to be 

a very powerful trade both in modern math and in physics. 

1.2. Overview 

The notion of a CSL misorientation has been widely used in discussions of grain boundary 

character (Randle, 1996).  In many materials, certain low Σ numbers correlate with so-called 

special boundaries, which may have different strengths, chemical resistances, or impurity 

segregation properties than non-special (or random) boundaries (Randle, 1994 & 1996 and 

references therein).  The CSL model has its limitations, notably in its neglect of the grain 

boundary plane orientation, but has proven useful enough to serve as a primary means of 

categorizing boundary types in both theoretical and experimental investigations.  A large 

literature has grown up around this concept since its introduction, particularly in cubic 

crystals (which will occupy our attention in this work), although the CSL concept may be 

applied to other crystal systems (Bollmann, 1972; Iwasaki, 1976; MacLaren & Aindow, 1997; 

Gertsman, 2001a).  The application of the properties of this group to twin-dominated systems 

in particular has seen considerable attention in recent years (e.g. Kopezky et al., 1991; Fortier 

et al., 1995; Gertsman & Tangri, 1995; Gertsman & Szpunar, 1998; Kumar et al., 2000; 

Gertsman, 2001a, 2001b, & 2002; Schuh et al., 2002 & 2003).  The present work owes much 

to these endeavours. 

In spite of broad interest, there remains much basic confusion as to the mathematical 

nature of this group of rotations.  Even so fundamental a result as the Σ combination rule 

governing the set of misorientations around a triple junction (Miyazawa et al., 1996; 



 

 

Gertsman, 2001a) was only clearly identified fairly recently and is still frequently 

misunderstood, despite clear mathematical proofs and frequent reminders in the literature as 

to the true nature of the rule.  The aim of the current work is to develop the structure of the 

CSL rotation group in terms of a network topology and a noncommutative algebraic 

representation that, once understood, make results such as the Σ combination rule more 

intuitively clear.  By the end, we will be able to determine what triple junction, (and 

quadruple node) assignments are consistent with a given grain topology, merely by sketching 

a few graphs.  Complex multiple intersections, which may occur with significant frequency in 

some structures (Kopezky et al, 1991) can be handled within the same formalism.  Specific 

cases such as the (often neglected) existence of Σ9-Σ9-Σ9 triple junctions and the non-

existence of Σ9-Σ27a-Σ27a triple junctions will be easily derived by checking the relevant 

graphs.  Any CSL orientation may be expressed as a product of elementary prime-Σ 

operations, then manipulated using algebraic rules.  We show how to extend the formalism 

beyond the triple junctions, to quadruple nodes and general topologies, and demonstrate how 

fundamental dimensionality effects may be clarified in the present approach.  For instance, 

the notion of a twin-limited structure is significantly different in 2- and 3-dimensions, in ways 

we can begin to quantify simply by understanding the structure of the CSL rotation group.  

Since the structure of this group is fundamental to grain boundary engineering, this type of 

understanding has significant practical implications. 

In order to reach this point we will begin with definitions, followed by a brief discussion 

of the importance of the Σ1 cubic symmetry group.  This will allow us to develop the 

algebraic representation and then the network topology of the CSL rotation group, using 

examples starting with groups of the type Σpω (with p an odd prime number and ω an 

exponent ranging over all the nonnegative integers; this is not to be confused with Σpn with a 

specific integer n, which represents a finite subset (but not a subgroup) of the group) but 

eventually generalizing to Σ values with more than one prime factor.  After considering some 

mathematical details, we will show a simple procedure for drawing a map of any relevant part 

of the CSL rotation group and applying this map to a set of crystalline grains, thereby 

determining all of the boundary and junction types for a given orientation assignment.  We 

will include specific examples drawn from the highly important Σ3ω "twin-related" group and 

close with discussions of current limitations and possible future developments. 

In summary, the logical progression is as follows:  The geometry of grain orientation and 

grain boundary misorientation is encoded in the CSL group; quaternions convert the group to 

an algebra; number theory factorizes quaternions into strings; the units of the string are 

mapped to links on a graph; a simple graph theory model is used to understand the Σ 

combination rule and other non-intuitive results of grain boundary interrelationships. 



 

 

2. Definitions and Symmetry 

2.1. Basic definitions 

This discussion will be limited to lattices with cubic symmetry.  The material in this 

section is well covered in the literature (Grimmer et al., 1974; Grimmer, 1974; Mykura, 1979; 

Grimmer, 1984), so we will summarize results without proof, however the results and 

definitions are quite scattered and notations vary widely, so this section is provided in the 

interests of clarity.  A CSL rotation may be represented by a 3x3 matrix of rational numbers 

with least common denominator Σ.  Σ must be an odd integer.  Since this matrix is to 

represent a rotation, it must be orthogonal (its transpose equals its inverse) and of determinant 

1 (which removes the possibility of reflection-rotations).  We will use the convention that, if 

we start with the crystal aligned with the reference axes, the columns of the matrix give the 

unit vectors of the rotated crystal's principal axes as expressed in the reference coordinate 

system.  Then right-multiplication of a rotation matrix by an element of the proper cubic point 

group (which we will call Σ1, as discussed below) does not change the resulting crystal 

orientation, and we can think of a rotation as acting to the right on a grain orientation.  The 

same is not in general true for left-multiplication by Σ1.  Both this convention and the reverse 

(in which all matrices are inverted, their order of multiplication reversed, and the matrices can 

be considered to act on the coordinate axes rather than the crystal grains) are in common use 

in the literature (Goldstein, 1950).  The distinction is important, as the formulas for 

calculating misorientation are different in the different conventions, as we will see. 

Besides as a matrix, a CSL rotation also may be represented as a quaternion of integers 

(Grimmer (1974)) which, when normalized to unit magnitude, may be expressed in terms of 

an axis-angle pair θn (n being a unit vector specifying the axis and θ the rotation angle) as: 

     [ ])2/sin()2/sin()2/sin()2/cos(/ 321 θθθθ nnnqq = .          (1) 

When the quaternion is expressed in lowest terms, the sum of the squares of the integers 

(which we will call the squared norm, although it is often called simply the norm in the 

mathematical literature) will equal one of Σ, 2Σ, or 4Σ.  A quaternion with a prime squared 

norm will be termed prime.  The inverse rotation is given by reversing the sign of either the 

first or the last three components (the overall sign being meaningless—we will implicitly 

neglect the overall sign of a quaternion throughout this work, and indeed any scalar multiple 

of a quaternion will yield the same rotation since we normalize it to unit magnitude before 

converting to a matrix).  We will use either the matrix or the quaternion representation 

according to convenience, and for simplicity will often speak of a rotation and its matrix or 

quaternion representations as being one and the same.  A distinction must sometimes be 

made, since matrix left-multiplication is equivalent to quaternion right-multiplication.  By 



 

 

default we will use the multiplication order appropriate for matrices, noting exceptions where 

they arise. 

These definitions suffice for us to construct the group Σ1, being the set of CSL rotations 

with Σ = 1.  We simply generate all column permutations (a factor of 3! = 6) and sign 

reversals (a factor of 23 = 8) for the three columns of the 3x3 identity matrix, resulting in 48 

matrices, half of which will have a determinant of +1.  Σ1 thus has 24 elements and is nothing 

other than the cubic point group with the rotation-reflections removed.  This is not surprising, 

since each Σ1 operation by definition maps a fraction 1/Σ = 1 of the original lattice points 

onto lattice points.  Therefore, as far as the cubic Bravais lattice is concerned, any element of 

Σ1 is equivalent to a null operation. 

Eventually we will show how to factorise any CSL rotation quaternion into a product of 

prime quaternions and a single (physically meaningless) element of Σ1.  In order to develop 

this notion, we shall use a hierarchy of equivalence classes based on the Σ1 symmetry group.  

These ideas of equivalence will enable us to introduce a set of arbitrary conventions (without 

loss of generality in any physically meaningful sense) which will allow us to assert the 

uniqueness of the factorisation. 

The structures of the coincident site lattices themselves will not be discussed here, but are 

well described in the literature (e.g. Grimmer, 1974 & 1976).  Instead we are only discussing 

the rotations that produce CSL's, and their interrelationships.  The interesting and important 

theory of triple junction CSL's (Gertsman, 2001a; 2001b) is similarly beyond the current 

scope. 

2.2. Hierarchical categorization of CSL rotations 

Since Σ1 contains only symmetries of the crystal, it follows that if we start in the natural 

coordinate system of a cubic crystal, performing a Σ1 operation before any other rotation R is 

equivalent to rotating by R alone.  The set of rotations thus naturally breaks into cosets RΣ1 

of rotations equivalent to a given R.  As a matter of notation, right-multiplying a matrix R by 

a set of matrices such as Σ1 simply means forming all matrices of the form RS with S being 

any element of Σ1, and similarly for left-multiplying.  A capital S symbol will always 

represent an arbitrary element of Σ1 in this work.  Each coset represents a grain orientation 

with respect to a reference grain, and we are free to choose any of the 24 elements RS of the 

coset to represent the rotation.  It is an elementary result of group theory that the cosets do not 

overlap, are all of the same size, and cover the entire CSL group. 

If, after a rotation R, we perform a Σ1 rotation in the frame of the reference grain, then this 

amounts to rotating by the same angle but about a different (but symmetrically equivalent) 

axis.  For example, if R rotates by 180o about [110], there are S1 and S2 in Σ1 such that S1RS2 



 

 

is a rotation of 180o about [011].  The set of matrices Σ1RΣ1, which will have as many as 242 

elements (possibly fewer depending on symmetries in R), therefore all represent the same 

"type" of CSL misorientation.  We will call the equivalence class Σ1RΣ1 a sub-type, to 

distinguish it from the conventional type defined below.  Since two grain orientations are 

represented by cosets R1Σ1 and R2Σ1, the misorientation between the two grains is 

represented by the rotations (R1Σ1)-1(R2Σ1) = Σ1R1
-1R2Σ1 in the frame of grain 1 (the set Σ1, 

being a group, is the same set as its elementwise inverse).  The choice of which elements of 

Σ1 are used in the representations of the two grains is entirely arbitrary and physically 

meaningless, so that any element of the same sub-type as R1
-1R2 would serve equally well as a 

representation.  Thus this notion of "sub-type" is the appropriate category for describing a 

misorientation from one grain to another, in the reference frame of the first grain.  The inverse 

sub-type Σ1R2
-1R1Σ1, which may be different but will have the same Σ, represents the 

misorientation going from grain 2 to grain 1. 

We note in passing that the product R2R1
-1 gives the misorientation rotation in the frame of 

the reference grain, which is in general of a different sub-type (often even a different Σ) than 

the misorientation as expressed in the frame of either grain.  Thus these matrices may be 

useful for calculation, but are irrelevant in determining the "specialness" of a given grain 

boundary.  If we had used the reverse of our rotation convention (see section 2.1), then the 

roles of R1
-1R2 and R2R1

-1 would be reversed.  Thus it is important to clarify which convention 

is being used.  Unfortunately this is not universally recognized and ambiguous applications of 

these matrices are easy to find in the literature. 

It is customary (Mykura, 1979) to categorize CSL rotations according to what we will term 

"types" of the form (Σ1RΣ1)∪(Σ1R-1Σ1) (with as many as 48*24 elements) and to label the 

types with a lowercase letter, e.g. the set Σ27a represents one such type of the rational rotation 

matrices with common denominator 27.  The letter is omitted when a given Σ only has one 

type.  Letters are assigned in order of minimum misorientation angle, with ties broken 

according to the sum of the indices of the minimum-angle rotation axis (h,k,l), given in lowest 

terms.(Mykura, 1979)  Unfortunately this criterion is still incomplete, as it fails to provide an 

ordering for, e.g., the Σ229 types given by quaternions [14 5 2 2] and [14 4 4 1].  If we break 

ties by first sorting in order of h2+k2+l2 and then by h3+k3+l3, the ambiguity problem is solved 

without creating the need to alter any existing tables.  The types are the appropriate category 

for describing a misorientation between two grains in their own reference frames, allowing 

for interchanging of the labels of the two grains.  The "specialness" of a boundary will thus 

depend on its type.  In terms of integer quaternions, all elements of a type may be generated 

by finding a quaternion in lowest terms [A B C D] with squared magnitude Σ, then generating 

the set {[A B C D], [A+B A-B C+D C-D], [A+C A-C B+D B-D], [A+D A-D B+C B-C], 



 

 

[A+B+C+D A+B-C-D A-B+C-D A-B-C+D], [A+B+C-D A+B-C+D A-B+C+D A-B-C-D]}, 

then finding all the permutations and sign reversals for each element of this set, and finally 

eliminating redundancy (recognizing that two quaternions that are nonzero scalar multiples of 

each other are equivalent) (Grimmer, 1984). 

Let us consider Σ3 as an example.  All integer quaternions with squared magnitude 3 will 

have the same "shape" (i.e., will be equivalent but for permutations and sign reversals) as [0 1 

1 1], which happens to represent a 1800 rotation about [1 1 1].  Since there is only one such 

shape, Σ3 has only one "type."  We can generate every single Σ3 quaternion using the 

methods in the preceding paragraph.  We find that they are the permutations and sign 

reversals of the set of shapes {[0 1 1 1], [0 1 1 2], and [3 1 1 1]} (with squared magnitudes 3, 

2x3, and 4x3), 96 in total once the overall-minus-sign redundancy is eliminated.  These can 

be separated into 4 cosets of 24 elements each.  We can arbitrarily choose one element of 

each coset to represent it; later in this work we will use the 1800 rotations about [1 1 1], [1 -1 -

1], [-1 1 -1], and [-1 -1 1].  These four elements, expressed as rotation matrices (using, e.g., 

the formulas in Grimmer (1974)), can be right-multiplied by each of the 24 elements of Σ1 to 

generate every possible Σ3 rotation. 

We have categorized the CSL rotations, in hierarchical order, according to their Σ 

numbers, types (Σ1RΣ1)∪(Σ1R-1Σ1), sub-types (Σ1RΣ1) (which are often the same as the 

types), cosets RΣ1, and individual rotations R (summarized in Table 1).  The process of 

mapping the cubic CSL rotation group will then consist of identifying the cosets and 

determining the types of the misorientations for each pair of cosets.  The symmetry properties 

allow us to do this for a single representative of each coset, with the assurance that the choice 

of representative will not affect the outcome. 

3. Algebraic Representations 

3.1. Context and statement of the problem 

We will start by deriving the properties of an algebraic representation of the CSL group as 

strings of representative rotations ai
p with i identifying a coset and the superscript p giving the 

Σ value (the variable p will always represent an odd prime in this work).  The choice of which 

representative to use for a given coset is arbitrary, but some choices will be much more 

convenient than others.  It is always possible to choose representatives ai
p such that each coset 

is represented exactly once, and the inverse of each representative is also a representative 

(possibly itself).  The construction of representatives is simplest in terms of integer 

quaternions, and relies on the fact (Grimmer, 1974 & 1976) that the relevant quaternions will 

fall into only a few classifications with known numbers of cosets for a given type.  Table 2 

explicitly shows one possible construction for each of these classifications.  The types 



 

 

themselves may be easily constructed by finding all the fundamentally distinct solutions over 

the integers of w2 + x2 + y2 + z2 = p, for a given p, which are easily found by trial and error.  

Since we can construct the ai
p for any type, we can combine these constructions to obtain our 

representatives for the entire set Σp.  Σp itself is obtained by right-multiplying the set of ai
p by 

the 24 elements of Σ1.  Each element will come up exactly once in this enumeration.  The 

verification that any two representatives as produced in Table 2 are in different cosets is a 

straightforward but tedious exercise in algebra, and will not be detailed here. 

Once we have constructed our representatives, we may (as will be proven below) represent 

any given CSL as a string representing an ordered product of representatives.  Once we have 

derived a few rules for the identification, uniqueness, and manipulation of these strings, we 

will implicitly have an algorithm for mapping any desired part of the CSL group.  Once this is 

done, we will be able to start drawing the graphs. 

Besides the definitions and development we have already presented, and the elementary 

result that the set of all CSL rotations is a group (obvious when one considers the rotations in 

rational matrix form), we will use two results from the literature to complete our proofs.  The 

first is the Σ combination rule (Miyaza et al., 1996; Gertsman, 2001a), which states that when 

two CSL matrices are multiplied such that AB = C, their Σ values are related by the formula 

,2
CBA k Σ=ΣΣ           (2) 

where k is a common factor of ΣA and ΣB.  Note this is often misunderstood, such that many 

authors insist that k = 1 for one of the permutations of A, B, and C.  This is overly restrictive, 

and discounts perfectly valid triple junctions such as Σ9-Σ9-Σ9 (with k = 3) (Gertsman & 

Tangri, 1995).  For example, Σ3-Σ15-Σ5 is valid (with k = 3, a common factor of 3 and 15), 

while Σ9-Σ5-Σ5 is not (since k = 3 is not a factor of 5).  The second result is a count of the 

number m(Σ) of CSL rotations of a given Σ.  This has been variously represented (Grimmer, 

1973 & 1976), and may be derived directly from number theory as: 

,124)( ∏ +
Σ=Σ

p p
pm                (3) 

where p is the set of prime factors of Σ (defined so that the special case m(1) equals 24).  The 

factor of 24 comes from the 24-fold redundancy in the representations of CSL's in terms of 

rotations, and may be omitted if it is understood that we are talking about cosets of Σ1 rather 

than individual rotations.  Thus we define m'(Σ) = m(Σ)/24.  For example, m(1) = 24, m(3) = 

96, and m(9) = 288, with m' = 1, 4, and 12 cosets, respectively.  In the special case where Σ = 

pn with n > 0, we have m'(Σ) = (p+1)pn-1.  With n = 1, we have (p+1) cosets of 24 elements 

each.  Thus the index i in the representatives a i
p can be taken to range from 1 to p+1. 



 

 

It follows directly from the Σ combination rule that left- (or right-) multiplying a rotation 

R with Σ = σ by an element of Σp will result in either an element of Σ(σ/p) ("lowering" σ) or 

one of Σ(σp) ("raising" σ).  All Σ values are integers, so if p does not divide σ, then all the ai
p 

must raise σ.  On the other hand, if p divides σ, then some of the representatives ai
p may 

lower σ, while others raise it. 

What we shall prove is that in the latter case, all the ai
p will raise σ except for one, which 

will lower it.  We will use integer quaternions for purposes of this proof.  To avoid confusion 

with the ai
p which up to now have been matrices, we will use the symbol Ai

p for the 

quaternion form of the representative rotation ai
p, recalling that the order or multiplication is 

reversed between the quaternion and matrix representations. 

3.2. Proof of the validity of the algebraic representation 

The proof rests on a textbook result (Hardy & Wright, 1938; Conway & Smith, 2003) 

from number theory that states that a quaternion Q (with integer components) with a 

composite squared norm N may always be factored (although in general not uniquely) into a 

product of prime quaternions with integer components, one for each element in the prime 

factor expansion of N, and with the factors appearing in any desired order.  With this fact in 

hand, all we need do is interpret this old result in terms of our CSL rotations.  The technical 

complications involving what Conway and Smith term "unit migration" as well as the factors 

of 2 that are explicitly dealt with by Hardy and Wright are handled in our case by the 

recognition of the hierarchy of equivalence classes, the establishment of our arbitrary 

conventions, and the transformations which we will encounter later in equations 8-10.  An 

understanding of such details is not necessary for following the discussion, however, and we 

only note this issue in passing for the interested reader. 

We have hypothesized (using the notions in section 2.1) that we have a Q with N = σ, 2σ, 

or 4σ, and σ containing a factor of p, an odd prime.  We may therefore produce a product 

q1q2...qk = Q of prime quaternions qi such that the squared norm of qk, |qk|2, is equal to p (to 

within factors of 2, which are unimportant via the arguments in Hardy & Wright, once we 

recognize that the considerations involving associates and factors of 2 are taken care of by our 

Σ1).  Let Q' = q1q2...qk-1.  Since for any quaternions Q1 and Q2 we have |Q1|2|Q2|2 = |Q1Q2|2 

(Conway & Smith, 2003), we know that |Q'|2 = one of σ/p, 2σ/p or 4σ/p, i.e. Q' is a CSL 

rotation in Σ(σ/p).  Our purpose in splitting off this quaternion prime factor qk is to determine 

how many of the Ai
p will lower σ, knowing that all the others will raise it. 

Now, since qk is in Σp, there exists exactly one Ai
p in the same coset as qk, i.e. 

p
ik SAq = , or SAq p

ik =−      (4) 



 

 

(to within meaningless scalar factors), where S is a quaternion representing an element of Σ1 

and A-i
p is the quaternion representative of the inverse rotation of Ai

p, which by construction 

is guaranteed to be a representative as well.  (This is just a notation--we know by construction 

that A-i
p = Aj

p for some positive j, possibly with j = i.  There are still only p+1 representatives 

for a given p.)  Thus we have constructed a representative quaternion A-i
p such that QA-i

p is 

the same rotation as Q'S ∈ Σ(σ/p).  That is, Ai
p lowers Q, leaving (again to within 

meaningless scalar factors) the quaternion Q'.  This procedure may be iterated to produce a 

prime factor decomposition of Q, as we will see below. 

The fact that there is in general more than one expansion q1q2...qk = Q with |qk|2 = p does 

not in any way restrict the validity of the proof, for the Σ number of a rotation is entirely 

independent of the choice of representation.  Thus the fact that Ai
p lowers Q for one of the 

p+1 choices of i is an invariant with respect to the choice of expansion of Q.  The only 

arbitrariness is in our a priori choices of the Ai
p among all the possible representatives of the 

cosets of Σp. 

Having completed the existence part of the proof, we return to the matrix representations 

(which will be more convenient for proving uniqueness), recalling that the order of 

multiplication is reversed.  If we represent σ as a product of odd primes in nondecreasing 

order: 

kn
k

nn ppp ...21
21=σ ,         (5) 

where the n's are exponents, by repeated application of the above algorithm we may generate 

a string of representative prime factors of the coset of a rotation matrix R: 

k

kpknppnpp

p
i

p
i

p
i

p
i

p
ij aaaaaRS

,

2

2,1

1

1,1

1

1,2

1

1,1
......= ,    (6) 

where the i's are the various indices identifying the representatives in the string, and Sj ∈ Σ1.  

For example, we might find that a certain Σ45 rotation matrix R may be lowered by left-

multiplying by a-1
3, resulting in a new matrix R' which itself may be lowered by left-

multiplying by a-3
3, leaving a matrix R'' which may finally be lowered by left-multiplying by 

a-2
5, leaving the Σ1 matrix S8.  Thus our original matrix R may be expressed as the product 

a1
3a3

3a2
5S8, with 3x3x5 = 45 and the subscripts chosen arbitrarily for purposes of the example.  

This string is sorted in the sense that the prime factors are in nondecreasing order (we could 

just as easily have produced a reverse-sorted string, a concept which we shall return to as it 

implies some interesting things about loops in the CSL group).  The string is also of minimum 

length for representing R, since by the Σ combination rule we need at least as many prime 

factors ai
p as there are elements in the product-of-primes expansion of σ.  It is clear that no 

two adjacent elements of the string are inverses of each other, for then the string would be 

immediately shortenable to an equivalent string, which we know not to exist.  This property 



 

 

of being Not Immediately Shortenable we will abbreviate as NIS.  Thus we have an algorithm 

for producing a minimal-length sorted NIS string representing the coset of any given CSL 

rotation. 

To prove uniqueness at this point requires merely a bit of combinatorics, by which we find 

that the number of sorted NIS strings with a prime expansion as given in equation 5 is exactly 

∏
=

+
=

k

j j

j

p
p

M
1

1
)(' σσ ,         (7) 

which is equal to the number m'(σ) of cosets in the set Σσ.  This is because the first 

representative for a given p may be chosen to be any of the p + 1 options, but after that we are 

not allowed to choose a representative that is the inverse of the one we have chosen most 

recently.  By the algorithm given above, any coset will produce a minimal-length sorted NIS 

string, and clearly a single sorted NIS string (which describes one specific rotation) can not 

represent two different cosets.  So by applying our algorithm to one chosen element of each 

coset of a given set Σσ, we can generate all M'(σ) = m'(σ) of the sorted NIS strings of the 

form given in equation 6, with no chance for redundancy or ambiguity.  When this is applied 

to the whole CSL group, no sorted NIS strings of any size will be left unassigned. 

Therefore we come to the core result, that any CSL rotation is represented by exactly one 

sorted NIS string.  As a corollary, we find that if a sorted string is not immediately 

shortenable, then it is not shortenable at all, i.e. no shorter string represents the same coset, 

and the prime factor expansion of the Σ number of the rotation may be read directly off the 

sequence of representatives. 

We should emphasize that this uniqueness comes at the cost of some arbitrary 

conventions, namely the specific selection of the representatives (or generators) ai
p and the 

sorting of the primes in nondecreasing order.  These derive from the Σ1 symmetry group and 

the noncommutativity of rotations.  If the primes are sorted in a different order (e.g. 

nonincreasing) we will obtain a different NIS string (e.g. a reverse-sorted one), and there is no 

guarantee that the representatives in different sortings will have any particular relationship.  

They may be identical, they may partially overlap, or they may not overlap at all and even be 

of different types (Barber, 2003).  The requirement that the inverse of a representative be a 

representative was convenient for the sake of the proof, but it may be dropped at the expense 

of having to manipulate more elements of Σ1 in the algebra. 

3.3. Algebraic rules 

Now that we can generate our strings, we need to know how to manipulate them.  Taking 

the inverse of a string is simple; we merely reverse the order of the elements and replace each 

element with its inverse.  Multiplying two strings is done by simple concatenation.  Two 



 

 

adjacent inverse elements may be removed or inserted into any string at will.  If we restrict 

ourselves to a set Σpω in which all the Σ values are powers of a single prime p, then this 

completes all the rules for algebraic manipulation.  This is because the issue of sorting does 

not arise, and there is exactly one NIS string for any coset.  In other words, if we think of the 

set Σpω as being a collection of cosets linked by the representatives a i
p, then the set is a so-

called "free group," that is, a group with no relationships among its generators (in this case, 

the representatives) other than the existence of an inverse.  The structure of a free group is 

quite simple and may be represented as a graph with no loops and the same number of 

neighbors (in this case p+1) for every cell.  This is the basis of the topological model 

discussed in the next section. 

The additional algebraic rules needed to handle cases of Σ having more than one prime 

factor are significantly more cumbersome, but can be compactly expressed in the following 

forms: 

m
p

l
p
k

p
j

p
i Saaaa 1221 = ,      (8) 

n
p
j

p
im SaaS = , and     (9) 

knm SSS =          (10) 

where the relationships among i, j, k, l, and m must be determined in each particular case. The 

result will depend on the choice of representatives for the two primes p1 and p2.  In words, we 

may swap prime representatives provided we modify their subscripts and account for a 

possible Σ1 discrepancy, we may swap an element of Σ1 with a representative provided the 

subscripts are adjusted accordingly, and we may perform operations based on the group 

structure of Σ1.  Equations (10) simply constitute the character table of Σ1.  As for 

transformations of the form given in equation 9, it is possible to work out every possible case 

by simply finding all the Sm and Sn that satisfy the equation for any given pair of 

representatives of the same sub-type.  By definition (recalling section 2), representatives of 

different sub-types will not interact via equations of this sort.  Once this problem is solved for 

all the classes given in Table 2, there are no more such relationships to be found.  We have 

done this, but the results are space-consuming and will only appeal to a small audience and so 

are omitted.  Note that except in the lowest-symmetry cases there will be more than one m 

and n solving the equation for a given p, i, and j. 

The remaining algebraic relationships, as given in equation 8, have to be generated 

systematically for each specific case (i.e. pair of prime factors) of interest.  There is no 

guarantee that the two pairs of generators even have types in common, and so the job must be 

done for each pair of prime factors involved in a calculation rather than just for the classes 

given in Table 2.  It is a simple matter to program a computer to do this automatically.  We 



 

 

have done this for all primes less than 50 (which surely includes all physically meaningful 

cases), but again the resulting tables would be too large to publish here. 

Some examples should clarify the notation.  For compactness, we will give the examples 

in quaternion rather than matrix form (recalling, again, that the order of multiplication is 

reversed).  Equation 8 has the following example from p1 = 3, p2 = 5: 

[ ][ ] [ ][ ][ ] [ ]213111100120001012001110 −−=−−−=−− ,     (11) 

where the Σ values of the quaternions appearing in this equation are merely their squared 

magnitudes, in order 3, 5, 1, 5, 3, and 15.  This shows two factorisations of the Σ15 

quaternion [1 -3 1 -2], one sorted and the other reverse-sorted, with the Σ1 element 

compensating so as to obtain the same representation of the coset in both cases.  An example 

of equation 9 is: 

[ ][ ] [ ][ ] [ ],20111110001100111110 −=−−−=−−   (12) 

where in this case the Σ values are, in order, 3, 1, 1, 3, and 3 (since the squared norms are 3, 2, 

2, 3, and 6).  The overall minus sign on the middle expression is meaningless (and would not 

appear in the matrix representation).  Thus the two rotations of type Σ3 have been 

interconverted by multiplying by appropriate elements of Σ1.  Finally, equation 10 has as an 

example: 

[ ][ ] [ ],111111110010 −−=         (13) 

in which all quaternions are Σ1. 

Once all the algebraic transformations (inversion, pair creation and annihilation, and 

equations 8-10) are worked out for the prime factors of interest, then all calculations may be 

done entirely in terms of representatives and Σ1 elements; the structure of the group is 

entirely implicit in these rules, and there is no further need to consider matrix or quaternion 

representations except to link to real-world calculations.  In general these algebraic 

manipulations would be quite tedious, but the transformation rules in the Σpω case are quite 

simple and allow us to make a number of observations via examples.  We proceed to do this 

in the important case of Σ3ω, known as the twin-related CSL group since all the rotations may 

be produced by combinations of coherent Σ3 twinning operations.  This groups captures all 

possible results of interacting Σ3 twins, which are very important in a large class of materials; 

also, it has been noted that any high-angle boundary may be well approximated as a Σ3n 

misorientation, with n not very large (Kopezky et al., 1991). 

3.4. Examples drawn from Σ3ω 

It should be clear that the type of a rotation is encoded in the string, since the string 

contains all the information as to which coset the rotation belongs to (which, if we recall the 



 

 

hierarchy in Table 1, also identifies the type).  In the case of Σ3ω, the encoding is particularly 

simple due to the very high symmetry of the set of generators.  Not only are all the generators 

of the same type (180o rotations about <111> axes), but each pair of generators has the same 

relationship (since any pair of 180o <111> rotations has the same geometrical relationship as 

any other pair, within symmetry operations of the crystal).  What this means algebraically is 

that ai
3aj

3 is the same type of rotation (namely a Σ9) for any distinct i and j, and is the identity 

when i = j.  This rule for multiplying representatives of Σ3 is the algebraic representation of 

Σ3-Σ3-Σ9 and Σ1-Σ3-Σ3 triple junctions (to be clarified below).  We also see that there are 

two types of Σ27 rotations ai
3aj

3ak
3 with i ≠ j and j ≠ k, namely the ones with i = k (which turn 

out to be the Σ27a rotations, as is easily checked by direct calculation) and the ones with i ≠ k 

(the Σ27b's).  Simple combinatorics produces the expected result, that there are 24 cosets of 

Σ27b but only 12 of Σ27a, in accord with standard tables (Mykura, 1979).  Σ81a rotations are 

represented as (ai
3aj

3ak
3aj

3)±1, Σ81b as ai
3aj

3ak
3al

3 (i, j, k, and l are all distinct), etc. and again 

the multiplicities come out as they should, with 48 cosets of the former and 24 of the latter.  

Gottstein (1984) produced a table relating strings to types on Σ3ω, but using notations and 

conventions that differ substantially from ours, and with no proofs of the general validity of 

the approach. 

If we were to consider p = 5 or more, the high symmetry among the set of generators in the 

p = 3 case is lost, which accounts for there being, e.g., more than one type of Σ25 rotation (so 

the "type" of ai
paj

p with i ≠ j can vary depending on the choices of i and j if p = 5, unlike the 

case of p = 3).  In general the identities and multiplicities of each type of rotation can be 

traced to the symmetries among the generators and in the representative strings.  These 

symmetries ultimately link back to the CSL type categorizations of Grimmer (1973, 1974, & 

1976).   Note that if we had chosen a less symmetric set of representatives of the Σ3 rotations, 

the symmetry properties and type classifications of the higher Σpω rotations would not be as 

obvious—the result that the distinction between a Σ27a and a Σ27b lies in the identity of the 

first and last elements is peculiar to our choice of representation. 

Next, consider the algebraic expression of the Σ combination rule (see figure 1).  We have 

three grains with orientations I, A, and B, as expressed in the reference frame of grain 1, and 

the misorientations, in clockwise order and expressed in the frame of the first grain of each 

pair, are XI = A, YA = A-1B, and ZB = B-1, with the product XIYAZB = I expressing the 

conservation of orientation (the subscript on a rotation giving the frame in which the matrix is 

expressed).  If all three misorientations are elements of Σpω, then they will each be 

expressible uniquely as a string of representatives ai
p.  When we form the product XY (which 

must equal Z-1, and thus be equivalent to a string of the same length), we will find that some 



 

 

number k (possibly zero) of representatives on the right hand side of string X will cancel with 

an equal number of representatives from the left hand side of string Y.  The result is that the 

string Z is shorter than the sum of the lengths of the other two by an even number, i.e. 

knnn YXZ 2−+= .     (14) 

Since Σ = pn for each string, this translates to 
k

YXZ p2/ΣΣ=Σ .     (15) 

Since pk is a common factor of ΣX
 and ΣY (as their strings are of length at least k), this is 

nothing other than the Σ combination rule in the special case of Σpω.  Thus the algebraic 

representation helps provide an intuitive basis for the Σ combination rule, but also takes us 

one step further, as we can now make statements about the relative likelihood of different 

values of k in equation 2.  This is because we know that only one of the p+1 possible 

representatives of a given p will be able to lower the Σ value, with the other p representatives 

raising it.  A similar thing happens when we generalize from Σpω to the entire CSL group, but 

we may have to re-arrange the order of factors via equations 8-10 to produce the maximum 

number of cancellations. 

As a specific example, consider the fact that a Σ3-Σ9-Σ27b triple junction is allowed.  An 

element of Σ27b might be represented as the product a1
3a3

3a4
3, which may be shortened by 

left-multiplying by a1
3 (which is its own inverse), leaving a3

3a4
3, an element of Σ9.  This is the 

algebraic representation of the "reaction" Σ27b = Σ9 + Σ3, possible at a triple junction.  In this 

case the conservation of misorientation equation would be expressed: 

Iaaaaaa =− )())(( 3
1

13
4

3
3

3
4

3
3

3
1 .         (16) 

Note the inversion on the Σ9 rotation, which is necessitated by the need to go in a consistent 

direction around the loop.  For another example a Σ9-Σ9-Σ9 triple junction might be 

represented as: 

Iaaaaaa =))()(( 3
1

3
3

3
3

3
2

3
2

3
1 .         (17) 

It is certainly possible to construct such a triple junction by multiplying pairs of Σ9 matrices 

until the result is a Σ9 matrix (Gertsman & Tangri, 1995; Miyazawa et al., 1996).  But the 

algebraic representation makes it clear exactly what form any solution must have and how 

many solutions are possible--even in cases in which no solution exists.  For example, if we try 

to construct a Σ9-Σ27a-Σ27a triple junction we find it to be impossible, even though it 

satisfies the Σ combination rule.  Since in our choice of representation a Σ27a will be of the 

form ai
3aj

3ai
3 for some i and j, it is clear that there is no pair of Σ27a strings the product of 

which will be a Σ9 string.  Thus we can avoid trying to find such a triple junction by trial and 

error. 



 

 

This demonstrates an important result that has been somewhat overlooked in the literature, 

that the satisfaction of the Σ combination rule is not sufficient to guarantee crystallographic 

compatibility.  It is necessary to keep track not only of the Σ values of the involved rotations, 

but also their types and even the specific identities of the representatives that produced the 

rotations.  The restriction in the triple junction case is relatively weak, in that some 

combinations of types of rotations with the given Σ values will not be compatible, but as we 

consider more complicated topologies the added restrictions start to interact with one another.  

For quadruple nodes there are Σ labellings of the boundaries that satisfy the Σ combination 

rule at every triple junction (and thus are locally crystallographically compatible) but are still 

impossible (see the next section for an example).  For large-scale realistic grain boundary 

networks the additional restrictions are complex and quite difficult to work out in general.  In 

a later section we outline a procedure that is guaranteed to generate crystallographicall y 

compatible type labellings of all the junctions in a network of any complexity.  We do not 

know of a computationally efficient solution for the inverse problem, i.e. given a grain 

topology and a set of Σ and type labellings, to determine whether there are any compatible 

grain orientation assignments.  Using the techniques discussed in this paper, though, we have 

expressed the problem in terms of graph theory and the algebraic manipulation of strings, so 

that there is no longer any need to work with explicit representations of rotations.  The 

problem is to find an assignment of one string to each node in the graph of the grain topology 

such that the type of each link in the graph (representing a grain boundary) matches the 

labelling we have chosen. 

To summarize, we have developed an algebraic representation of any CSL rotation coset 

(that is, a grain orientation) as a prime factor decomposition that is unique on Σpω and unique 

subject to a sorting convention on the entire group.  The fundamental algebraic rules for 

manipulating the strings are simple, namely that two adjacent elements with the same p may 

be simplified if and only if they are inverses, and two elements with different p's may be 

swapped if their indices are adjusted according to case-specific but easily-discovered rules 

(equation 8), possibly with the introduction of Σ1 elements in the string, which may be 

manipulated with additional rules (equations 9-10).  The rules suffice to convert any string 

whatsoever into an equivalent sorted NIS string, which we know to be unique.  To see why, 

consider that we can always swap prime elements until they are sorted, moving any generated 

elements of Σ1 to the right end of the string, where they do not interfere with the coset 

definition of equivalence.  Since the rules are reversible, this means the rules suffice to 

generate any string equivalent to a given string.  The Σ combination rule, differences among 

types of rotations, and multiplicities of various types of rotations come directly out of the 

algebraic rules and the symmetries of the generators ai
p.  Once the generators are constructed 



 

 

and their symmetries identified, we may simply do algebra on the generators and be 

guaranteed that, for example, any triple junction we produce will be crystallographically 

correct. 

With this, we are able to move on to drawing and interpreting graphs. 

4. The Topological Model 

4.1. Topological mappings, with examples from Σ3ω 

We may now take our results and re-describe them in terms of graphs.  This requires 

merely an interpretation of the algebraic representation; no new results need be derived.  In 

fact we can delve right in, starting with Figure 2, a map of a portion of Σ3ω.  Each vertex 

(marked with a square) is a coset, representable by exactly one non-shortenable string of the 

ai
3.  The index i of the generator that links two adjacent cosets is indicated as a number from 1 

to 4 for each link.  Since the generators of Σ3ω were chosen to be their own inverses, there is 

no need to make this a directed graph, although this is not always possible for larger primes.  

The graph is that of a free group with four neighbors per vertex, and labelled such that the Σ 

value of a vertex is equal to 3n, with n the number of links between it and the central Σ1 

vertex which is the same as the number of elements in its shortest string representation.  We 

have only drawn a fraction of the elements beyond Σ9, but the remainder up to Σ243 may 

easily be constructed due to the symmetry of the structure.  Implicit in this graph is the set of 

distinctions among the different types in terms of symmetries in the strings, as well as the 

multiplicity of each type. 

The string representing a given coset may simply be read off the graph, starting from the 

Σ1 origin.  For example, the only Σ81d rotation shown may be reached by a sequence labelled 

(1,2,1,2), and thus is represented by a1
3a2

3a1
3a2

3.  If we were to instead choose a more 

circuitous route, say along the sequence labelled (1,2,1,3,3,2) (going out on a branch and then 

returning via the same path), the resulting string would be a1
3a2

3a1
3a3

3a3
3a2

3, which is 

immediately shortenable via the algebraic rule a3
3a3

3 = I to the previous representation.  This 

is the graphical representation of the double elimination rule, that going out and returning 

along the same path has no effect.  Since Σpω is a free group in our representation, there is no 

other way to generate an ambiguity in the generation of a string. 

Allowed triple junctions may be immediately generated simply by choosing three of the 

vertices (which represent the three grain orientations) and tracing the paths that link them.  

For example, if we choose the Σ1 origin, the Σ27b vertex linked to it by the path (1,3,4), and 

the Σ3 vertex linked to Σ1 by the line labelled 1 (the relevant cosets and links being 

highlighted in the figure), we find that the three paths linking the three grains are the rotations 



 

 

a1
3a3

3a4
3, a3

3a4
3, and a1

3, and this is exactly the same Σ3-Σ9-Σ27b triple junction we used as an 

example in a previous section.  There is no need for one of the grains to be at the origin; the 

grains a2
3, a1

3, and a1
3a3

3 would also form a Σ3-Σ9-Σ27b triple junction, with all the rotations 

of the same type as in the first example, and thus entirely equivalent to the first triple junction 

to within an arbitrary choice of coordinate systems.  In other words, two triple junctions that 

look equivalent on this topological graph really are equivalent in physical terms.  This is 

unsurprising, as a group is in some sense homogeneous, so that the network must look 

topologically the same from any node.  We can also immediately see that there are no Σ9-

Σ27a-Σ27a triple junctions (there being no pair of Σ27a vertices separated by a distance of 

exactly two), while it is easy to construct Σ9-Σ9-Σ9 triple junctions (simply choose three of 

the Σ3 vertices, for example). 

The fact that double elimination is the only simplification possible on strings in Σpω has a 

practical consequence for the important case of twin-dominated structures, which tend to have 

clusters of grain boundaries with nearly-ideal Σ3ω misorientations (Gertsman et al., 1994; 

Randle, 1996).  The restrictions on the ways in which such clusters may be constructed are 

central to discussions in grain boundary engineering (Gertsman et al., 1994; Randle, 1996; 

Minich et al., 2002).  Consider such a cluster, and take some starting grain within it to have 

the reference orientation (i.e. start at the Σ1 vertex in the graph).  Now if we draw a 

contiguous path from one grain to the next, we will follow a sequence of vertices in the Σ3ω 

graph, with the misorientation between adjacent grains represented by the path linking their 

vertices in the graph.  If the path through the set of grains is closed, returning to its starting 

point, then the path through the Σ3ω tree must similarly return to the Σ1 node, and the only 

way for this to happen is for the steps to be retraced exactly.  So in our Σ3-Σ9-Σ27b example, 

going from grain 1 to grain 2 we have the string a1
3, then from grain 2 to grain 3 we have 

a3
3a4

3 for a total of a1
3a3

3a4
3, and to get back to grain 1 we must follow a path a4

3a3
3a1

3, 

retracing the paths in the tree exactly.  This procedure, concatenating the strings in a closed 

loop of grain boundaries, must retrace the steps regardless of the size of the loop, so long as 

only ideal Σ3ω boundaries are involved.  In a highly twin-dominated structure these loops can 

be very large, involving many grains, and will overlap significantly.  The resulting constraint 

on the structure is quite strong--much stronger than would be implied by the Σ combination 

rule alone.  There will be many imaginable structures that satisfy the Σ combination rule at 

every triple junction yet fail to work on a larger scale (an example is described below).  A 

large cluster of pure Σ3ω misorientations has much fewer (discrete) degrees of freedom in the 

grain boundary assignments than would be expected at first glance.  All of these constraints 

are implicit in the structure of figure 2(a); now that we have drawn this graph there is no need 



 

 

to consider the explicit matrix or quaternion forms of the rotations so far as crystallographic 

compatibility is concerned. 

This procedure can be generalized to any grain boundary topology (with each node a grain 

and each line a boundary) and the entire CSL group.  The algorithm is simple:  We assign one 

node in the CSL graph to each node in the grain boundary topology graph.  Then the type of 

each boundary may be read as the sequence of labels on the shortest path in the CSL graph 

linking the two CSL nodes corresponding to two adjacent grains.  In short, we simply have to 

specify a relation between the two topologies (the CSL graph and the grain boundary network 

graph), and everything about the orientations and misorientations in the entire structure is 

determined, in a way guaranteed to be crystallographically compatible.  This procedure is 

very straightforward in the case of Σ3ω, but gets more complex as we add more prime factors. 

Some examples should clarify.  For a triple junction, the grain topology graph is simply a 

triangle.  For a quadruple node it is a tetrahedron, with each vertex representing a grain, each 

edge a grain boundary, and each side a triple junction.  Figure 3 shows examples of possible 

and impossible constructions on such a tetrahedron, still staying within the Σ3ω group.  The 

mapping between the Σ3ω graph and the tetrahedral grain topology graph is represented by the 

capital letters on the Σ3ω graph.  In the first example (Figure 3b), each pair of capital letters is 

separated by exactly two Σ3 links, meaning that all the boundaries are Σ9, so that this is a 6Σ9 

quadruple node with four Σ9-Σ9-Σ9 triple junctions.  The other examples work in the same 

way.  Several of these examples (and some of the associated observations) have already been 

shown in the literature (Fortier et al., 1995; Miyazawa et al., 1996; Gertsman, 2001a and 

2001b), but generally using the relatively cumbersome matrix representations of the rotations, 

and probably with some trial and error involved in the generation of some of the examples.  

We hope the reader will agree that, using the representations developed in this work, these 

examples and observations may be constructed with more ease, clarity, generality, and (in 

some cases) mathematical rigor.  Specifically, besides being able to construct examples of 

structures that are possible, we can now easily prove that certain large general classes of 

structures are not possible.  With some practice in applying the graphs, one can develop an 

intuition for the sets of constructions that are and are not possible. 

Using the construction in Figure 3b, we can see that it is possible to make an entire grain 

boundary network with only Σ9 boundaries, if and only if the grain topology graph is 4-

colorable, i.e. we can label each vertex with one of only four labels, with no two adjacent 

vertices having the same label (Note that the "if" part of the theorem is implied in the work of 

Miyazawa et al. (1996), but that the "only if" part is somewhat harder to come by via their 

methods).  We choose the labels as shown in Figure 3b, and the construction is complete.  

Since there is no fifth orientation that has a Σ9 relationship to more than one of these, the 



 

 

construction fails for graphs that require more than 4 colors.  Since all planar graphs are 4-

colorable (Appel & Haken, 1989), the construction is always possible in a plane but almost 

never possible in three dimensions, where 4-colorability is a rare exception (in fact there is no 

limit to the number of colors potentially required in three dimensions).  In practical terms, this 

means that a thin film with a columnar grain structure has the potential for a higher proportion 

of Σ9 boundaries (potentially 100%) than does a random three-dimensional grain structure.  

We note that the tetrakaidecahedral lattice often used in grain boundary models is one of these 

highly atypical 4-colorable 3-dimensional networks, which will potentially skew simulation 

results that depend on the network connectivity, while the 3-colorability of the commonly-

used hexagonal tiling of the plane is similarly atypical for a 2-dimensional network. 

The second example, Figure 3c, shows the only quadruple node that contains Σ3 and Σ9 

junctions and nothing else.  Figure 3e shows an attempt at generating another such example, 

and even though every single triple junction in this construction satisfies the Σ combination 

rule, the quadruple node itself is impossible.  The Σ3ω graph for this structure shows why—it 

would require a loop in the graph, while Σ3ω (taken as a set of cosets) is a free group with no 

loops.  Removing any element in this graph with a loop gives us a valid graph; this is the 

graphical representation of the fact that every triple junction in the attempted construction 

satisfies the Σ combination rule.  This is an example of how higher levels of structure in a 

system can introduce frustrations that are not evident at the more local levels.  It is easy to 

produce further examples, in which e.g. the quadruple junctions are all valid yet the complete 

structure is impossible.  Figure 3g is a simple example, showing the simplest possible non-

four-colorable network with every boundary labelled as Σ9.  We speculate that this process 

continues indefinitely--that to enumerate all such constraints would imply potential 

correlations at all distance scales, and moreover that these correlations would be very 

different in graphs of different typical colorabilities (particularly in two versus three 

dimensions).  Since even the Σ combination rule by itself has been shown to have a 

controlling influence on such ensemble behavior as percolation thresholds in two-dimensional 

twin-dominated systems (Minich et al., 2002), we propose that perhaps the detailed structure 

of this group has far deeper physical consequences than has been generally recognized 

(mirroring observations made by Gertsman and collaborators (multiple references) for 

example).  Obviously the identity and processing history of any material will also have 

controlling influences, but our results suggest that these influences must be considered in the 

context of the mathematical structures governing the topology.  Until now a detailed, 

rigorously-derived, intuitively visualizable map of the twin-related rotation group has not 

been available.  We hope that our contribution will help to shed some light on this issue. 



 

 

Let us now consider the notion of a twin-limited structure.  This concept has been used by 

several researchers (Palumbo et al., 1992; Miyazawa et. al, 1996; Gertsman, 2001b), but with 

important differences in definition.  Generally it refers to a structure with the largest possible 

number fraction of Σ3 boundaries.  This fraction is often taken to be 2/3, but this result 

depends strongly on the context, as has been noted (Gertsman & Szpunar, 1998; Gertsman, 

2001b).  The dimensionality is certainly important, as is the manner in which Σ1 boundaries 

are handled. 

Note that the Σ3/Σ9 ratio in the allowed pure-Σ3/Σ9 quadruple node is 1:1 (Figure 3c), 

which differs from the result in two dimensions, with a pure-Σ3/Σ9 twin-limited structure 

containing nothing but Σ3 and Σ9 junctions in a 2:1 ratio.  So again we see a significant 

dimensionality effect, so that the twin-limited structures are notably different in two and three 

dimensions.  One should keep in mind, however, that the ratio of boundary types in a three 

dimensional structure can differ from the ratio of boundary types in the average quadruple 

node—even if there is only one type of quadruple node (here is where our interpretation 

departs from that of Gertsman (2001b)).  A specific construction demonstrating this will be 

presented below.  So it is possible to get a Σ3/Σ9 ratio greater than 1:1 in a three-dimensional 

structure consisting of only Σ3 and Σ9 boundaries (see the caption of Figure 3), but a ratio 

approaching the 2:1 possible in two dimensions would put enormous constraints on the 

structure and is unlikely to occur in practice (it might be impossible—we have not proven it 

one way or the other). 

Yet it is possible to have 2/3 of the junctions in a quadruple node be of the Σ3 type, as 

shown in Figure 3d, if we include a low-angle Σ1 grain boundary.  A proper consideration of 

this case would require development of the concept of small deviations from ideal CSL 

orientations, which is beyond the scope of this paper but which has been discussed in the 

literature (e.g. Frary & Schuh, 2003).  A simple approach is to introduce small-angle rotation 

matrices and to develop approximation techniques depending on the commutativity to first 

order of small rotations, which is essentially what is done by Frary & Schuh (2003), although 

their statistical results are puzzling (e.g. the uniform distribution over their limiting tetrahedra, 

which should not occur with an unbiased selection of deviations over SO(3) in which small 

rotation angles θ would appear with a probability proportional to θ2).  Σ1 boundaries are 

sometimes neglected in discussions of grain boundary networks, in part because 

experimentally it is difficult to distinguish a nearly-perfect Σ1 boundary from localized lattice 

strain.  This example should serve as a reminder that the low-angle boundaries can play an 

essential role in the network topology. 

Allowing the low-angle Σ1 boundaries also allows us to construct three-dimensional 

networks with Σ3 fractions above the 2/3 limit that applies in two dimensions.  Figure 3f 



 

 

shows how to assign orientations to a tetrakaidecahedral array to reach a Σ3 fraction of 5/7 = 

71.4%, with the remaining boundaries equally split between Σ1 and Σ9.  The upper limit to 

the Σ3 fraction in a pure Σ1/Σ3/Σ9 system is likely to be somewhat more than this. 

4.2. Extension beyond Σ3ω 

Figure 4 shows examples of how to draw graphs for more than one prime factor.  We start 

with Figure 4a, a graph of Σ5ω up to Σ125.  The representative quaternions in this case are 

chosen to be a±1
5 = [±2 1 0 0], a±2

5 = [±2 0 1 0], and a±3
5 = [±2 0 0 1].  This differs from the 

choice in Table 2 but makes the symmetry somewhat more apparent and also lets us show 

how to draw graphs in cases in which the ai
p are not self-inverses.  The graph is a directed 

graph, with each label showing the path followed if we multiply by ai
5 (in the direction of the 

arrow) or the inverse a-i
5 (against the arrow), where i now ranges from 1 to 3.  The symmetry 

of the set of representatives of Σ5 is more akin to the faces of a cube, compared to the 

tetrahedral symmetry of the p = 3 case where each of the four generators has an equivalent 

relationship to each of the other generators.  The symmetry of the graph for Σ5ω is noticeably 

weaker than that for Σ3ω, for instance (as already noted) there are two different types of Σ52 

rotations but only one of Σ32 rotations.  Also, since each vertex has six nodes instead of four 

(3 each incoming and outgoing labelled 1, 2, and 3), the tree grows quite quickly and we only 

include a small representative sample of the network.  The sample is sufficient to reconstruct 

the entire tree up to Σ125 by use of symmetry. 

Figure 4b then shows a portion of the graph of Σ3ω5ω, that is, all CSL matrices with all 

prime factors of Σ in the set {3,5}.  This tree expands even faster than in the Σ5ω case, and 

only enough is drawn to show the basic idea.  Labels are omitted not only to reduce clutter but 

to avoid certain complications which we will consider shortly.  Essentially, at every node in 

the Σ5ω tree (shown in heavy lines), we may place the origin of a Σ3ω tree.  We know from 

the unique sorted factorisation properties that each coset of Σ3ω5ω will appear exactly once in 

this tree.  But we could also have drawn a Σ3ω tree and put a Σ5ω tree at every node, and this 

too would have reached each coset exactly once.  This is the graphical representation of the 

difference between sorting and reverse sorting.  What this means is that from each of the four 

Σ3 nodes, there are six Σ5 lines linking it to six of the twenty-four Σ15 nodes.  We did not 

draw these lines in, for two reasons.  First, the diagram would have been hopelessly cluttered.  

Second, the detailed pattern of connectivity of the lines is rather meaningless (although some 

aspects are invariants), resulting as it does from the arbitrary choice of representatives ai
3 and 

ai
5.  The pattern would have to be determined in detail for any specific choice of 

representatives.  This would be the graphical representation of equation 8 in the previous 

section.  Equations 9-10 have no representation in these kinds of graphs, since they deal with 



 

 

the properties of the symmetry group Σ1, which is simplified in the graphs by letting each 

node represent a coset with respect to Σ1. 

The impact of the Σ1 element appearing in equation 8 should be considered more closely.  

Consider Figure 4c, a small portion of the Σ3ω5ω graph.  We show a single Σ15 node that may 

be reached either by taking first a Σ3 path and then a Σ5 path from the origin, or by taking a 

Σ5 path and then a Σ3 path.  The two products of pairs of generators will produce the same 

coset, but will not in general be equal, differing by a factor of some element of Σ1 as in 

equation 8.  This appears to be an inevitable consequence of the noncommutativity of 

rotations about different axes and the loss of symmetry involved in combining two sets of 

representatives with different p's.  Essentially we end up in two different coordinate systems 

which are equivalent under cubic symmetry as expressed in the target grain.  Performing an 

additional rotation (say, multiplying by a1
3) will yield a different result depending on which 

coordinate system is used.  Even the Σ number of the result is in question, for one of the a1
3 

paths from our Σ15 node might lead to a Σ45, the other to a Σ5.  Algebraically, this ambiguity 

is expressed as: 
3
1

353
1

53 aSaaaaa mlkji = ,     (18) 

and we note that while Sma1
3 is guaranteed to be the same type as a1

3, it will not always be in 

the same coset, and so is likely to be represented by some ai
3 other than that with i = 1.  So it 

is in general not possible to label the links on the graph unless we choose a convention, which 

can be the same convention as before, such that the link between two cosets is the one that 

would appear in a sorted NIS string representation.  The types of grain boundaries between 

any two nodes will then have to be calculated using the rules in equations 8-10. 

In short, the graphs for Σpω are much easier to work with, since the way we are drawing 

the graphs suppresses the information about which element is used to represent each coset, 

but this information is important for cases involving more than one prime factor since the 

same coset may be reached by more than one shortest path in these cases. 

We have now seen the graphical analogs to all the essential aspects of the algebraic 

representation, namely unique sorted and reverse-sorted representations of the cosets, 

determination of boundary types from grain orientations, the rules for manipulation of strings, 

and the determination of what boundary type assignments are consistent with crystallographic 

constraints such as the Σ combination rule (and generalizations of the Σ combination rule to 

more complex topologies).  With the explicit construction of the representatives in Table 2, it 

is possible to derive all of the algebraic transformations and draw all of the graphs for any 

desired part of the CSL group.  Fortunately only the elementary transformations such as those 

in equation 8 need be calculated for each case in terms of quaternions or matrices.  Once this 



 

 

is complete (as we have done for all physically meaningful cases), and the types of rotations 

are identified in terms of their conventional notation (e.g. Σ27a versus Σ27b is identified as a 

particular symmetry in the representative string), then everything may be done in terms of the 

prime representatives ai
p and the symmetry elements Si and there will no longer be any need 

to deal with matrix multiplications or quaternion algebra.  The advantages are quite 

significant in the important case of Σ3ω, where we only need to consider strings from a four-

letter alphabet to do every possible calculation. 

5. Summary and Conclusion 

As the CSL model is generally taken to be just one of the first steps in describing grain 

boundaries, so the formalism developed in this work can be a starting point for more in-depth 

investigations.  Deviations from the ideal CSL orientations, for instance, can be introduced by 

including small random rotations, possibly in an approximation scheme taking advantage of 

the first-order commutativity of small rotations and their random nature.  This has the 

potential to produce reasonable statistical calculations for large topologies without the need to 

calculate all the rotations in detail.  Small intragrain strains (King, 1999) may be dealt with in 

a similar manner.  Generalization of our approach to the O-lattice concept (Bollmann, 1972; 

MacLaren & Aindow, 1997) may also be of interest, and consideration of non-cubic lattices is 

also a natural extension of the approach.  Unfortunately without cubic symmetry the natural 

mapping between integer quaternions and CSL rotations is lost.  The related proofs are likely 

to be correspondingly less accessible. 

Instead of generalizing we can also proceed in the opposite direction, to simpler models 

which may be more clear in our formalism than they would be otherwise.  Significant results 

have been obtained in the literature from simple considerations of the crystallographic 

constraints in a small portion of the Σ3ω group (Fortier et al., 1995; Kumar et al., 2000; Schuh 

et al., 2003), including the effects of the Σ combination rule and quadruple-node constraints 

on the statistical behavior of grain boundary topologies.  Since we can now easily represent 

the structure of the entire Σ3ω group with extremely simple manipulations of strings with a 

four-letter alphabet, the generalization of such results should be greatly facilitated.  It is easy 

to generate an exhaustive list of all the quadruple nodes with all-Σ3ω boundaries up to a fixed 

limit, for instance.  Thus we will avoid both neglecting real possibilities (the classic example 

being the Σ9-Σ9-Σ9 triple junction, which is neglected almost as a matter of course in some 

segments of the literature) and wasting time on apparent possibilities that are in fact 

crystallographically inconsistent (such as the 4Σ3/2Σ9 quadruple node in Figure 3e).   

The abstract concept of the constraining effect of the group connectivity on the grain 

boundary network is an interesting and important notion that can be very confusing at first 



 

 

glance.   Considered in terms of mapping one graph to another such as in Figure 4, the idea 

becomes much more intuitive and accessible, and some results that were puzzling or poorly 

understood in the literature become more obvious in light of these simple pictures.  In 

addition to clarifying old results, we have made observations regarding connections among 

the CSL group structure, the dimensionality and colorability of graphs, and the nature of twin-

limited structures in different topologies.  We have every hope that our approach will 

facilitate rapid progress in the statistical understanding of grain boundary networks. 

Figure 1 Definitions and governing equations for conservation of orientation (also called 

crystallographic compatibility) around a triple junction. 

Figure 2 (a) Map of a portion of the Σ3ω twin-related group.  Each box is one coset of 24 elements.  

Links are labelled with the index i for the representative ai
3 linking the two cosets.  Examples discussed 

in the text are highlighted.  (b) Highlight of the Σ3-Σ9-Σ27b triple junction example, showing how to 

generate the triple-junction types from the labels of the links connecting each pair of grain orientations. 

Figure 3 Tetrahedral representation of a quadruple node.  (a) Notation, with single letters denoting 

grains, pairs denoting grain boundaries, and triples denoting triple junction lines.  (b)-(d) Several 

examples of crystallographically compatible quadruple junctions.  (e) One example that is incompatible 

yet satisfies the Σ combination rule along all triple lines.  (f)  Assignments of orientations from (d) to 

the tetrakaidecahedral lattice, producing a Σ3 fraction of 5/7.  Assignments are shown for one plane 

(solid lines) and the next plane above it (dotted lines).  Each succeeding pair of planes will swap the 

labels in pairs (A,C) and (B,D).  This example also illustrates the 4-colorability of the network, and 

how the aggregate statistics may differ from the statistics of each quadruple node in three dimensional 

networks.  If instead we assign the orientations from (c), we obtain a structure with a Σ3 fraction of 4/7 

and with only Σ3 and Σ9 junctions present.  (g) A case in which all quadruple nodes are allowable yet 

the global structure is not. 

Figure 4 Additional examples incorporating Σ5ω.  (a) Map of a portion of Σ5ω.  Links are labelled 

with the alternative ai
5 described in the text, in the direction given by the arrows for i = 1, 2, 3 and in 

the opposite direction for i = -1, -2, -3.  (b) A small portion of Σ3ω5ω.  The ai
5 links are highlighted.  (c) 

Illustrating the ambiguity that makes labelling graphs with more than one prime factor difficult. 

Table 1 Hierarchical categorization of the CSL rotation group, a subgroup of SO(3).  Each row 

consists of a union of sets from the row above.  In addition the types may be categorized by symmetry 

class (Table 2), but not in a manner that fits into this hierarchy.  Types and sub-types will be identical 

unless the type has 48*24 elements (putting it into the (a,b,c,d) class).  The product over p is for all 

prime factors p of n. 

Term Formula Significance Number of Elements 

Element R A single rotation 1 

Coset RΣ1 A grain orientation 24 



 

 

Sub-Type Σ1RΣ1 Misorientation of an ordered 

pair of grains 

(1, 4, 6, 8, 12, or 24)*24 

Type (Σ1RΣ1)∪ 

(Σ1R-1Σ1) 

Misorientation of an unordered 

pair of grains 

(1, 4, 6, 8, 12, 24, or 48)*24 

Σn Σn (n must  

be odd) 

CSL rotations with a fixed ratio 

n of unit cell sizes ∏ +
=

p p
pnnm 124)(  

Σnω Σ1∪Σn∪ 

Σn2∪Σn3∪... 

A group consisting of repeated 

applications of elements of Σn 

∞  (if n > 1, odd) 

24 (if n = 1) 

CSL Group 
U

∞

=

+Σ
0

)12(
k

k  All 3x3 rotation matrices with 

all rational elements 

∞  

Table 2 Construction of representatives ai
p in quaternion form for each of the possible classes of 

types.  a, b, c, and d are distinct positive integers, and the sum of the squares of the elements of each 

quaternion is equal to Σ = p, an odd prime.  The construction ensures that (1) each coset is represented 

exactly once, and (2) the inverse of a representative rotation is also a representative rotation.  180o 

rotations (with first element equal to zero) are chosen where possible, so that each rotation is its own 

inverse in these cases. 

Class Number 

of cosets 

Representatives 

[1 0 0 0] 1 (Σ1) [1 0 0 0] 

[1 1 1 0] 4 (Σ3) [0 1 1 1]   [0 -1 -1 1]   [0 1 -1 -1]   [0 -1 1 -1] 

[a b 0 0] 6 [0 ±a  b  0]    [0  0  ±a  b]    [0  b  0  ±a] 

[a a a b] 8 [±b  ±a  ±a  a] 

[a a b 0] 12 [0  ±a  ±a  b]    [0  ±a  b  ±a]    [0  b  ±a  ±a] 

[a b c 0] 24 [0  ±a  ±b  c]    [0  ±b  ±a  c]    [0  ±a  c  ±b] 

[0  ±b  c  ±a]    [0  c  ±a  ±b]    [0  c  ±b  ±a] 

[a a b c] 24 [±a  ±a  ±b  c]  [±a  ±b  c  ±a]  [±a  c  ±a  ±b] 

[a b c d] 48 [±a  ±b  ±c  d]  [±a  ±c  ±b  d]  [±a  ±b  d  ±c] 

[±a  ±c  d  ±b]  [±a  d  ±b  ±c]  [±a  d  ±c  ±b] 
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Figure 3b-e 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3f-g 
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Figure 4a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Σ1

Σ5

1

Σ5Σ5

Σ5Σ5Σ5

2 3

3 2 1

1 2 3

25b 25b

3 2
25b25b

125b

125d 125e

125f

125c

1 2

3 2 1

25a

125c

125c

125a

125c

1 2

3 2

3
125c

2 3

25a 25b25b

1 2 3

25b 25a25b

1

2 1

25b 25a25b

32 1

25a 25b25b

32 1

25b 25b25a

3

1

25b 25b

21
25b

3
25b

2

25b25b

1 2 3

25b 25b

3
25b25b

1

Σ1

Σ5

1

Σ5Σ5

Σ5Σ5Σ5

2 3

3 2 1

1 2 3

25b 25b

3 2
25b25b

125b

125d 125e

125f

125c

1 2

3 2 1
25b

125b

125d 125e

125f

125c

1 2

3 2 1

25a

125c

125c

125a

125c

1 2

3 2

3
125c

25a

125c

125c

125a

125c

1 2

3 2

3
125c

2 3

25a 25b25b

1 2 3

25b 25a25b

1

2 1

25b 25a25b

32 1

25a 25b25b

32 1

25b 25b25a

3

1

25b 25b

21
25b

3
25b

2

25b25b

1 2 3

25b 25b

3
25b25b

1



 

 

Figure 4b 
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